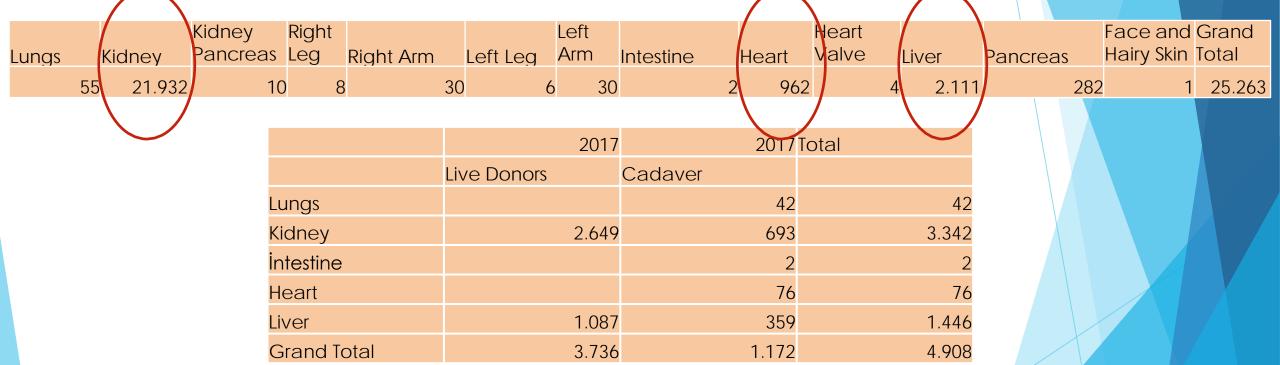
Stem Cells in Tissue Engineering

Assist. Prof. Görke Gürel Peközer

Introduction to Biomedical Engineering 22.12.2022, YTU

Tissue and Organ Losses


- Tissue and organ losses can be as a result of trauma, cancer, infection and diseases.
- They can be lethal or decrease the quality of life of patients affecting them mechanically, aesthetically or psychologically.
- The golden standard in the treatment of tissue and organ losses is to transplant their biological equivalents which is done by tissue grafting and organ transplantation.

Transplantation-Organ Donor Statistics (USA)

2 Lungs Liver Pancreas 2 Kidneys Intestines

Transplantation-Organ Donor Statistics (Türkiye)

To expand the organ donor pool E-**nabız** (enabiz.gov.tr)

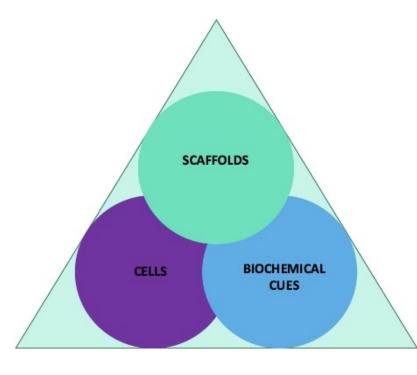
TÜRKÖK (http://www.kanver.org/sayfa/kan-hizmetleri/kok-hucre-bagisi/5)

Prosthesis

- When tissue and organ transplantation is not an option prosthesis are used to partially compensate the organ losses.
- Prosthesis is an artificial body part to replace or augment a missing or impaired part of the body
 - made of biomaterials such as metals, ceramics or polymers
 - generally permanent but have an expiration date
 - integrates poorly with the tissue at the defect site
 - can fail due to infection or fatigue

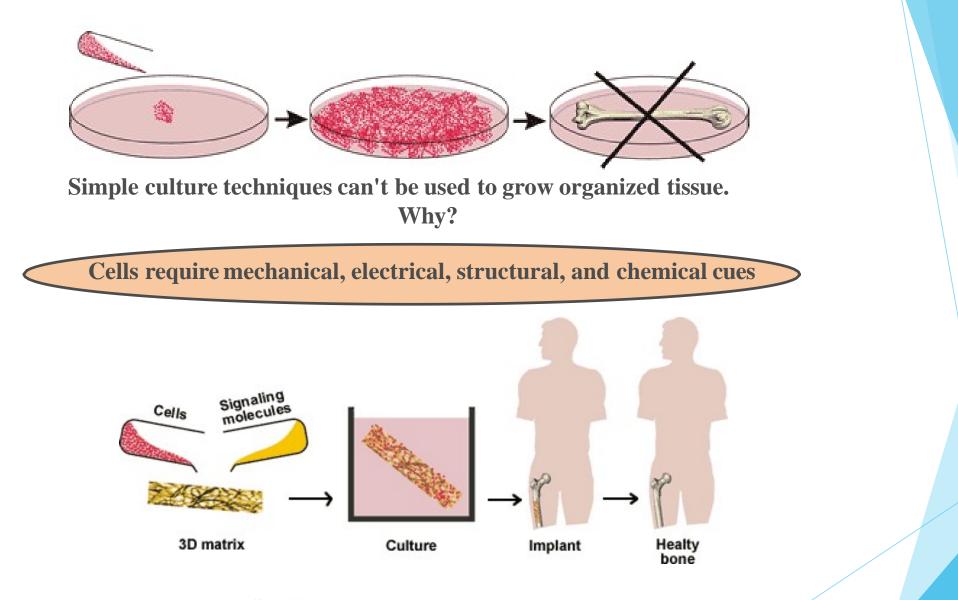
A Better Solution?

- Waiting lists for the organ transplantation, donor shortage and inefficiency of prosthesis in terms of satisfying the patients mechanical, physiological and aesthetic needs drive the scientists to search for a superiror solution.
- Tissue engineering can be a potential solution addressing the drawbacks of those conventional methods.



Tissue Engineering

- An *interdisciplinary field* that applies the principles of engineering and life sciences towards the *development of biological substitutes* that restore, maintain, or improve tissue function.
- Tissue engineering evolved from the field of biomaterials development and refers to the practice of combining scaffolds, cells, and biologically active molecules into functional tissues.
- Tissue engineering research began as a response to the growing need for tissues and organs for transplantation.
- It offers a life-long solution and a better quality of patients' life reducing the need for repeated hospitalization and health care costs associated with pharmaceutical therapy


TISSUE ENGINEERING ESSENTIALS

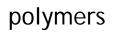
Tissue Engineering has 3 main components: Cells, Scaffolds, Biochemical Cues

Tissue Engineering Methodology

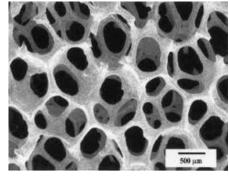
Scaffold-guided tissue regeneration

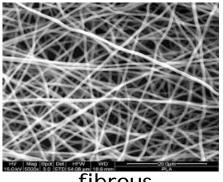
Scaffolds

- a platform which is designed for the cells to grow on and to guide them for the ultimate three dimensional (3D) architecture of the tissue
- serves as a substitute for damaged tissues by providing the necessary mechanical support until healthy tissue regenerates
- acts as a template for the guided organization of cells by providing specific signals to guide the cells and regulate the cellular function
- serves as a barrier to prevent the infiltration of surrounding tissue that may impede the process of regeneration
- serves as a delivery vehicle for exogenous cells, growth factors, and genes


An ideal scaffold:

- Should be biocompatible
- Should match tissue or organ's mechanical needs
- Should promote tissue regeneration
- Should be biodegradable

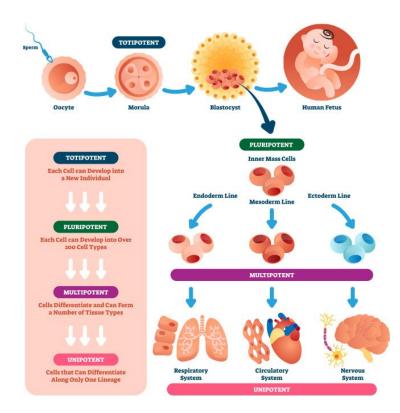

metals



ceramics

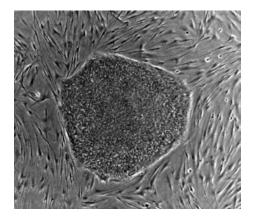
porous

fibrous

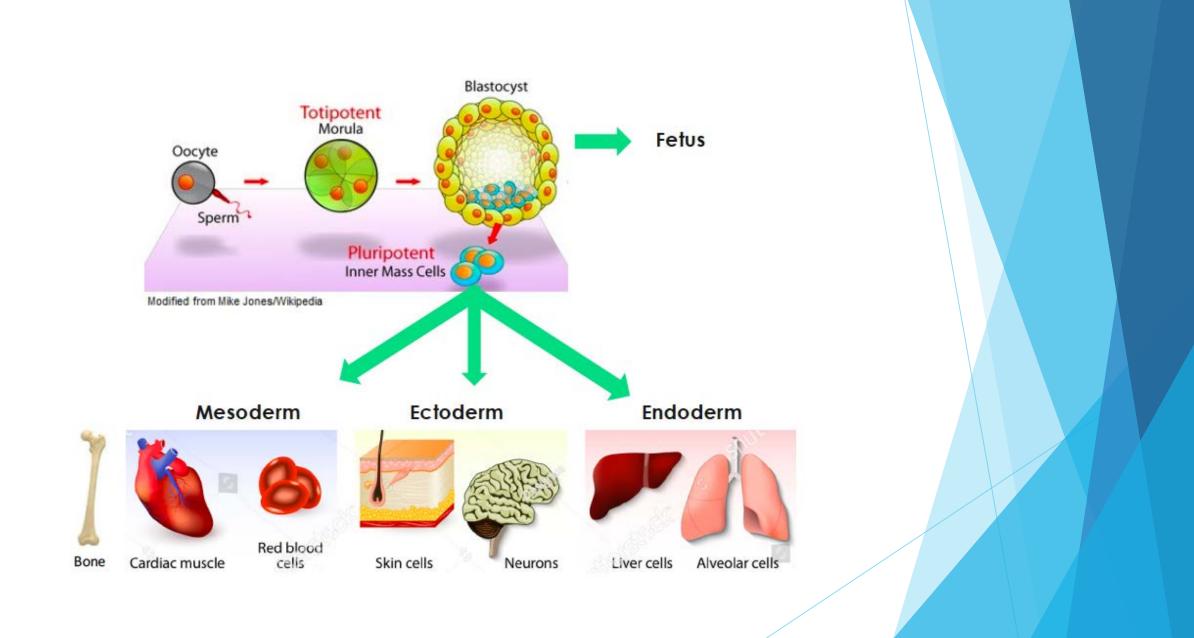

hydrogel

Primary Cells

- Chosen according to intended tissue/organ
- Autologous, allogenic, xenogenic
- Donor site morbidity, donor shortage, immune risk, pathogen transmission
- Hard to obtain high cell number
- Limited proliferation capacity

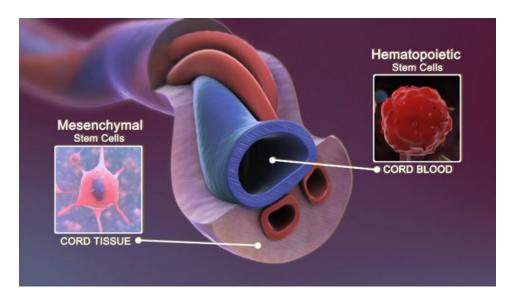

Stem Cells

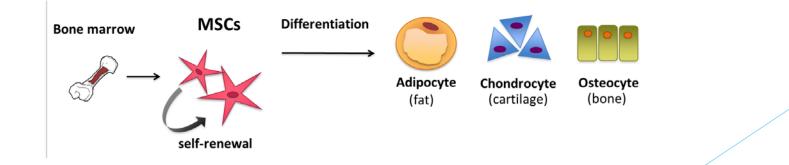
Stem cells are undifferentiated cells that have 2 different properties: selfrenewal and potency.



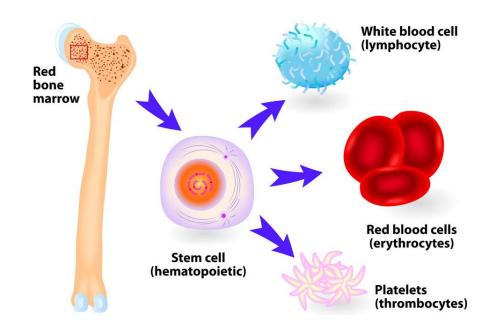
Embryonic Stem Cells (Pluripotent)

- ESCs can be isolated from ICM of blastocyst stage embryos and grown under culture conditions.
- They have the ability to self-renew with an endless capacity under appropriate conditions.
- When appropriate conditions are supplied they can differentiate all cell types from the 3 lineages body: ectoderm, mesoderm, endoderm.
- They form teratomas when implanted in body.
- There are ethical issues involved with their usage.

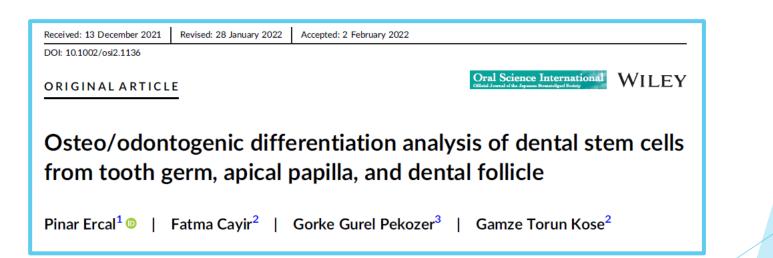



Fetal Stem Cells

- The developing organs and tissues in a fetus contain a relatively large supply of stem cells because they are needed for growth and maturation.
- The difference between embryonic stem cells and fetal stem cells is the fetal stem cells have gone through part of the way to mature cells.
- Stem cells that are isolated from umbilical cord blood as soon as the baby is born are one type of fetal stem cells.


Adult Stem Cells: Mesenchymal Stem Cells (Multipotent)

- Mesenchymal stem cells (MSCs) are a type of adult stem cells that are able to self-renew and multipotent.
- They are present in adult tissues like bone marrow, adipose tissue and dental tissues serving as a cell source for regeneration of various mesenchymal tissues.
- MSCs come from mesodermal lineage thus thay can differentiate into multiple tissues such as bone, cartilage and adipose under defined culture conditions.



Adult Stem Cells: Hematopoietic Stem Cells (Multipotent)

- Hematopoietic stem cells (HSCs) are stem cells that are able to self-renew and multipotent.
- They give rise to blood cells through the process of haematopoiesis.
- They are isolated from bone marrow.

Turkish Journal of Biology

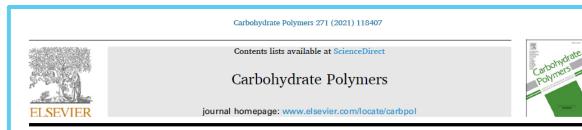
http://journals.tubitak.gov.tr/biology/ Research Article Turk J Biol (2019) 43: 235-245 © TÜBİTAK doi:10.3906/biy-1904-63

TÜBİTAK

Fibrous bone tissue engineering scaffolds prepared by wet spinning of PLGA

Nergis ABAY AKAR¹, **Görke GÜREL PEKÖZER^{1,2}**, **Gamze TORUN KÖSE^{1,*}**, **G**¹Genetics and Bioengineering Department, Faculty of Engineering, Yeditepe University, İstanbul, Turkey ²Molecular Biology-Genetics and Biotechnology Department, İstanbul Technical University, İstanbul, Turkey

ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY, 2018 VOL. 46, NO. 3, 607–618 https://doi.org/10.1080/21691401.2017.1332637



Check for updates

Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering

Gorke Gurel Pekozer^{a,b,c}, Mustafa Ramazanoglu^d, Karl Andreas Schlegel^e, Fatma Nese Kok^f and Gamze Torun Kose^{b,c}

^aMolecular Biology-Genetics and Biotechnology Program, Istanbul Technical University, Istanbul, Turkey; ^bGenetics and Bioengineering Department, Yeditepe University, Istanbul, Turkey; ^cCenter of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, METU, Ankara, Turkey; ^dDepartment of Oral Surgery, Faculty of Dentistry, Istanbul University, Istanbul, Turkey; ^eDepartment of Maxillofacial Surgery, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen-Nuremberg, Bavaria, Germany; ^fDepartment of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey;

Evaluation of natural gum-based cryogels for soft tissue engineering \star

Ezgi Irem Bektas^a, Gorke Gurel Pekozer^b, Fatma Neşe Kök^c, Gamze Torun Kose^{a,*}

^a Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey ^b Department of Biomedical Engineering, Faculty of Electrical and Electronics Engineering, Yildis Technical University, Istanbul 34220, Turkey ^c Department of Molecular Biology and Genetics, Faculty of Science and Literature, Istanbul Technical University, Istanbul 34467, Turkey Adv Exp Med Biol - Cell Biology and Translational Medicine https://doi.org/10.1007/5584_2020_505 © Springer Nature Switzerland AG 2020

A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells

Panar Ercal and Gorke Gurel Pekozer

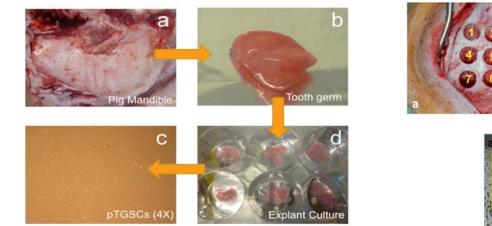
Adv Exp Med Biol – Cell Biology and Translational Medicine DOI 10.1007/5584_2018_171 © Springer International Publishing AG 2018

> Dental Stem Cells in Bone Tissue Engineering: Current Overview and Challenges

Pinar Ercal, Gorke Gurel Pekozer, and Gamze Torun Kose

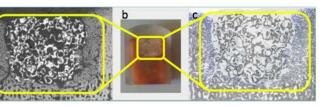
Clinical Oral Investigations https://doi.org/10.1007/s00784-020-03625-6

ORIGINAL ARTICLE



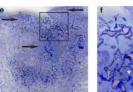
The effect of polyethylenglycol gel on the delivery and osteogenic differentiation of homologous tooth germ–derived stem cells in a porcine model

Mustafa Ramazanoglu¹ · Tobias Moest² · Pınar Ercal³ · Zacharias Polyviou² · Katharina Herrmann² · Gorke Gurel Pekozer⁴ · Aart Molenberg⁵ · Rainer Lutz² · Gamze Torun Kose⁶ · Friedrich Wilhelm Neukam² · Karl Andreas Schlegel²


Received: 6 April 2020 / Accepted: 7 October 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Bone Tissue Engineering with dental germ stem cells on pig model

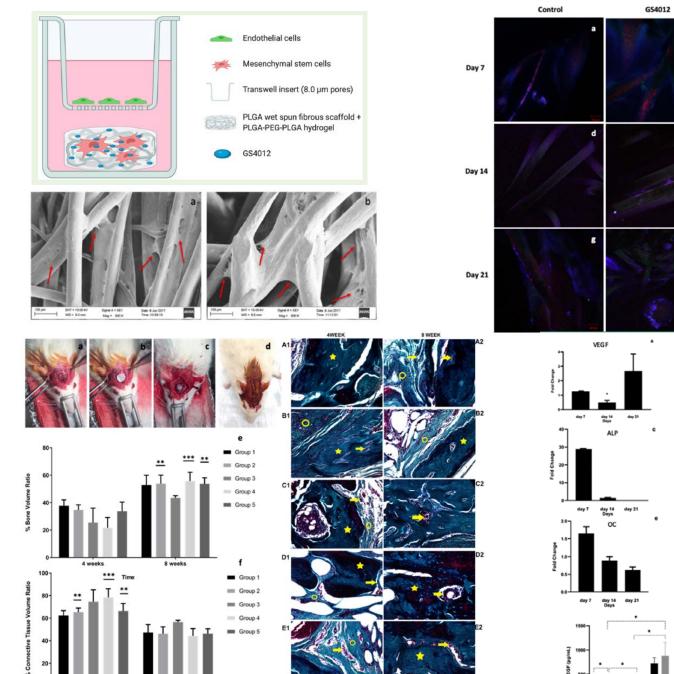




	Growth Medium			Osteogenic Medium		
	Stro-1(+)	Stro-1(-)	US	Stro-1(+)	Stro-1(-)	US
Day 7					32	
Day 14						
Day 21						

pubs.acs.org/journal/abseba

Article


Investigation of Vasculogenesis Inducing Biphasic Scaffolds for Bone Tissue Engineering

Gorke Gurel Pekozer, Nergis Abay Akar, Alev Cumbul, Tahsin Beyzadeoglu, and Gamze Torun Kose*

Cite This: ACS Biomater. Sci. Eng. 2021, 7, 1526–1538

4 weeks

Time

8 weeks

Induction of Vasculogenesis by GS4012 VEGF inducer from biphasic scaffolds on rat model

VEGF

Ь

e

h

CD31

Runx2

day 14 Dava

day 7 day 14 day 21 Days

PLGA-PEG-PLGA without GS4012

PLGA-PEG-PLGA with GS4012

day 7 day 14 day 21 Davs